A

/18 BASIC STRUCTURE OF CPROGRAMS

The examplas discunsed so far iustrote that a C program can be viewed as a group c:f bullding blocks
called functions A funclion is o subroutine that may include one of more statemaents designed (o perfarm

May contain one or more soctions as shown in Fig. 1.9.

ST R P AT

Shadi i MEROTRN AP T VT | PSS TR =2 S T

__Dp(_:umonln!lon Section

| Link Section _ e
1 Definltion Section . -
| Global Declaration Section —

1 main() Function Sot_:ildn
| | ecaraton pan-
l Exec»:nat_ul_t_a pant

b

Subprogram section

e i i

1
Function 1

——— ettt}

Function 2

(User-dafined funclions)

———

Cregrvidwr of €

' A e pidisd \ v «
The documentation section consists of a set of comment lines giving the namse o

f the program,
the author and other details, which the programmer would like o use later, The link sedion provvdes
instructions to the compiler to link functions from the system library. The definition secfion defines ati
symbolic constants,

There are some variables that are u
variables and are declared in the
section also declares al| the user-d

sed in more than one function. Such variables are called gfobal
global declaration section that is outside of all the functions. This
efined functions.

Every C program must have one main() function section. This section contains two parts, declaration
part and

executable part. The declaration part declares all the variables used in the executable pari.
There is at least one statement in the executable part. These two parts must appear between the

opening and the closing braces. The program execution begins at the opening brace and ends at the
closing brace. Th

e closing brace of the main function section is the logical end of the program. All
statements in the declaration and executable parts end with a semicolon(;).
The subprogram section contains all the user-defined functions that are called in the main function.
User-defined functions are gener

ally placed immediately after the main function, although they may
appear in any order.

All sections, except the main function section may be absent when they are not requirec9

CONSTANTS, VARIABLES,
AND DATA TYPES .

—
dentifiers | Constant | String constant | Variable | scanf
—————— e —-—ﬁh‘.‘
K

Wi R INTRODUCTION 42

ed to help process certain kinds of data consisting of numberg
useful output known as information. The task of processing of date;
ce of precise instructions called a program. These instructiong

are formed using certain symbols and words according to some rigid rules known as syntax rules (or
grammar). Every program instruction must confirm precisely to the syntax rules of the language.

Like any other language, C has its own vocabulary and grammar. In this chapter, we will discuss the
concepts of constants and variables and their types as they relate to C programming language.

A programming language is design
characters and strings and to provide
is accomplished by executing a sequen

2.2 CHARACTER SET 5
22 C &

nd expressions depend upon the computer
ters is available that can be used on most
are grouped into the following

The characters that can be used to form words, numbers a
on which the program is run. However, a subset of charac
personal, micro, mini and mainframe computers. The characters in C
‘ categories:
L 1. Letters
; 2. Digits
l 3. Special characters

4. White spaces

The entire character set is given in Table 2.1.

gnores white spaces unless they are a part of a string constant. White spaces may be

The compiler i
ers of keywords and identifiers.

' ; used to separate words, but are prohibited between the charact

\ﬁrigraph Characters

n-English keyboards do not support all the characters mentioned in Table 2.1. ANSI C introduces

d
3 Many no
a way to enter certain characters that are not available on

the concept of “trigraph” sequences to provide

Constants, Variables, and Data Types

some keyboards, Each trigraph sequence consists of three characters (two question marks followed by
another character) as shown in Table 2.2.
For example, if a keyboard does not support square brackets, we can still use them in a program

using the trigraphs ?7(and 77?).

C Charactar Set

] “able 2.1

o seretn

Lelters

Digits

F@mase A..Z

Lowercase a.....Z

. comma

. period

; semicolon

: colon

? question mark
' apostrophe

* quotation mark
! exclamation mark
| vertical bar

/ slash

\ backslash

~ tilde

__under score

$ dollar sign

% percent sign

Special Characters

White Spaces
Blank space
Horizontal tab
Carriage return
New line

Form feed

All decimal digits O

& ampersand

A caret

* asterisk

— minus sign

+ plus sign

< opening angle bracket
(or less than sign)

> closing angle bracket
(or greater than sign)

(left parenthesis

) right parenthesis

[left bracket

] right bracket

{ left brace

} right brace

number sign

.....

P W O P R,

[RRp—

T
y M Ayt vy en eyt
S —————

e s

Translation Bitee

Bt

ety e

ity i

nurnter &ign T
[1ot brackes
) tight bracieen
{1l brace
}right brace

| vesticad by

Vback siash

" caret
J2.3 C TOKENS 5
o
oy R -
In a passage of text, individual words

ofte: : and Punctuation mark
the smallest individual units are known as C tokens, C ha

8 are called tokens. Similarly,
programs are written using these tokens ang the syntax o

S six types of tokens as show
f the language.

rC TOKENS i

inaC program
ninFig.2.4. ¢

L el
- Keywords Constants Strings ! ; : Operators %
- |
|
"ABC" i ¥ —
float -15.5 " - | # -

while 100 year !

5
| Identifiers ! Special Symbols |
main H
amount
Fig. 2.1 C tokens and examples
' \44 KEYWORDS AND IDENTIFIERS ~

, . ings and
- Every C word is classified as either a keyword or an identifier. All kgywords have fixed mesatg'tr;?n i
L “these meanings cannot be changed. Keywords serve as basic building blocks for program

Conslants, Vmial;ltm, anil [1afy Ty,
£ {11 %

The list of all keywords of ANSI G ar
Some compilers may 2 0o g

'y

use additiona) kt‘*yw’('.)(:]((:q‘“t;):l‘mn /? o o 1 the
WwWorde must be idantifiedg fres .
' m the

, Note 99 avde SO0 Ine

bo written in lowercage
8 “I1l.3502,

C manuat

Ve keywonds ©
O VWOrTis a1y HI!) /\/}/)(;,”ﬁx "l'j;{)f) /':(‘)nh_”',v; i ‘
> : QD -y »
- aub T =

{ double int 2|
brea struct el
k else I o)

case . ohg switch
char fam register typedef
const extern return union (
continue Hloat short unsigned |
for signed i 3
default Soto _9 void |
do : sizeof . volatile i
if static while ;

Id.entlﬁers refer to the names of variables, functions and arrays. These are user-defined names and
consistofa squence of letters and digits, with a letter as a first character. Both uppercase and lowercase
letter§ are. ptj:‘rmltiéed. although lowercase letters are commonly used. The underscore character is also
permitted in identifiers. It is usually used as a link between two words in long identifiers.

/ Rules for Identifiers

First character must be an alphabet (or underscore).
Must consist of only letters, digits or underscore.
Only first 31 characters are significant.

Cannot use a keyword.

Must not contain white space

-

O hown

/2.5 CONSTANTS et
Constants in C refer to fixed values that do not change during the execution of a program. C supports
several types of constants as illustrated in Fig. 2.2.

Integer Constants
.'Arj"inte’ger constant refers to a sequence of digits. There are three types of integers, n‘amely, decimal
~ integer, octal integer and hexadecimal integer. ' * |
" 'Decimal integers consist of a set of digits, 0 through 9, preceded by an optional —or + sign. Valid
~examples of decimal integer constants are:
" Bhot B 123 —321 0 654321 +78

Programming in ANSI C

| CONSTANTS t

s

prtivetima bt A & s Nt itppinsqpemrrt-soly

i Numeric constants t ! Character constants ’
\ ‘/_.—’
¥
{ Integer i Real] | Single character . String .
| constants “Lconstants i constants . constants

Fig. 2.2 Basic types of C constants

Embedded spaces, commas, and non-digit characters are not permitted between digits. Forexamgie

15750 20,000 $1000
are illegal numbers,

l NOte ANSI C supports unary plus which was not defined earfier. : ; l

An octal integer constant consists of any combination of digits from the set 0 through 7, with 2 leading
0. Some examples of octal integer are:

037 0 0435 0551
A sequence of digits preceded by Ox or OX is considered as hexadecimal integer. They may zalsp
include alphabets A through F or a through f. The letter A through F represent the numbers 10 through
15. Following are the examples of valid hex integers:
0X2 O0x9F 0Xbcd Ox
We rarely use octal and hexadecimal numbers in programming. :
The largest integer value that can be stored is machine-dependent. It is 32767 on 16-bit machines

and 2,147,483,647 on 32-bit machines. It is also possible to store larger integer constants on these
machines by appending gualifiers such as U,L and UL to the constants. Examples:

567839U or 56789u (unsigned integer)
987612347UL or 98761234ul (unsigned long integer)
9876543L or 9876543l (long integer)

The concept of unsigned and long integers are discussed in detail in Section 2‘77

l Program 2.1 l Representation of integer constants on a 16-bit computer.

The 'program in Fig. 2.3 illustrates the use of integer constants on a 16-bit machine. Thg outpu_t in
Fig. 2.3 shows that the integer values larger than 32767 are not properly stored on a 16-bit machine.
However, when they are qualified as long integer (by appending L), the values are caorrectly stored.

Constants, Variables, and Dats Types

Pedgram
@atng)
{
T ("Integer valuesynin®y,
Printi(™sd d sd\n", 32767,32767+1,32767+10} ;
prantf("\n"),
pPrintt("Long integer values\n\n");,

} Printf("s1d £1d %1d\n", 327671,32767L41L,327671L+101.) ;

Qutput
Integer values
32767 -32768 -32759
Long integer values
32767 32768 3777

Fig. 2.3 Representation of integer constants on 16-bit machine

\/Real Constants

Integer numbers are inadequate to represent quantities that vary continuously, such as distances,

heights. temper:’:ltures. prices, and so on. These quantities are represented by numbers containing
fractional parts like 17.548. Such numbers are called real (or floating point) constants. Further examples
of real constants are:
0.0083 —0.75 435.36 +247.0

These nurpbers are shown in decimal notation, having a whole number followed by a decimal point
and the fractional part. It is possible to omit digits before the decimal point, or digits after the decimal
point. That is, _

215. 95 —-71 +5

are all valid real numbers.

A real number may also be expressed in exponential (or scientific) notation. For example, the value
215.65 may be written as 2.1565e2 in exponential notation. e2 means multiply by 102. The general for is:

mantissa e exponent

The mantissa is either a real number expressed in decimal notation.or an integer. The exponent is
an integer number with an optional plus or minus sign. The letter e separating the mantissa and the
exponent can be written in either lowercase or uppercase. Since the exponent causes the decimal
point to “float”, this notation is said to represent a real number in floating point form. Examples of legal
floating-point constants are: {

0.65e4 12e-2 1.5e+5 3.18E3 -1.2E-1
Embedded white space is not allowed.

Exponential notation is useful for representing numbers that are either very large or very small in
magnitude. For example, 7500000000 may be written as 7.5E9 or 75E8. Similarly, -0.000000368 is
equivalent to -3.68E-7.

ngn;mmlng in ANS! ©

sufg'oming'point constants are normally represented as double-precision quantities. However, the
xes f or F may be used o force single-precision and | or L to extend double precision further. o

Some examples of valid and invalid numeric constants are given in Table 2.4.

Table 2.4 Examples of Numeric Constants

| Constant Valid? ‘ Remarks j 1
g 6G98354L Yeos i Represents long integer §
‘ 25,000 No Comma is not allowed !

+5.0E3 Yes (ANS! C supports unary plus) |

3.5e-5 Yes \

7.1e4 No No white space is permitted

-4.5e-2 Yes

1.5E+2.5 No Exponent must be an integer

$255 No $ symbol is not permitted 1

0X7B Yes Hexadecimal integer l

\/§ingle Character Constants

2:
?1
i
!

A §ingle -character constant (or simply character constant) contains a single character enclosed within a
pair of single quote marks. Example of character constants are:
I5! le l;l [)
Note that the character constant ‘5’ is not the same as the number 5. The last constant is a blank
space. '

Character constants have integer values known as ASCII values. For example, the statement
) printf("%d", 'a');
would print the number 97, the ASCII value of the letter a. Similarly, the statement
j il printf("%c", '97'); "
would output the letter ‘a’. ASCII values for all characters are given in Appendix Il.

Since each character constant represents an integer value, it is also possible to perform arithmetic
operations on character constants. They are discussed in Chapter 8.

\ﬁtring Constants
A string constant is a sequence of characters enclosed in double quotes. The characters may be letters,
numbers, special characters and blank space. Examples are:
’ “Hello!” “1987” “WELL DONE" *?...I" “6+3" “X”
Remember that a character constant (e.g., ‘X') is not equivalent to the single character string
- constant (e.g., “X”). Further, a single character string constant does not have an equivalent integer value

“while a character constant has an integer value. Character strings are often used in programs to build
meaningful programs. Manipulation of character strings are considered in detail in Chapter 8.

Constants, Varlables, and Data Types

ackslash Character Constants

some speci K " . . ;
C SUPQOS(; ‘\n'“etqm;t‘ml backslash character constants that are used in output functions. For example,
8 ‘ v .
the 15)2)“5 ot ‘5;18:1(o for newline character. A list of such backslash character constants is given in
Y .
Table % ateach on‘e of them represents one character, although they consist of two characters.
These characters combinations are known as escape sequernces

Table 2.5 Backslash Character Constants

i Ci

onstant Meaning
\a’' audible alert (bell)
\b’ back space
A\f form feed
n’ new line
‘r’ carriage return
At horizontal tab
v’ vertical tab
A" single quote
e double quote
\? question mark
v backslash
“10° null

|ﬂ{g VARIABLES (:j_)

A variable is a data name that may be used to store a data value. Unlike constants that remain
unchanged during the execution of a program, a variable may take different values at different times
during execution. In Chapter 1, we used several variables. For instance, we used the variable amountin
Sample Program 3 to store the value of money at the end of each year (after adding the interest earned

during that year).
A variable name can be chosen by the programmer in a meaningful way so as to reflect its function

or nature in the program. Some examples of such names are:

Average
height
Total
Counter_1
: class_strength
* As mentioned earlier, variable names may consist of letters, digits, and the underscore(_) character,

subject to the following conditions:
1.~ They must begin with a letter. Some systems permit underscore as the first character.

Programming in ANSI C

2. al:f;gs?::ar? recogni.zes a length of 31.characters. However, length §h9U|d not be normally morg

acters, since only the first eight characters are treated as significant by many compilers

(In C99, at least 63 characters are significant.) -

3. ;._Jggirf.ase and lowercase are significant. That is, the variable Total
4. It should not be a keyword.
5. White space is not allowed.

is not the same as tota|

i Some examples of valid variable names are:

| John Value T_raise
Delhi X1 ph_value
. mark sumi distance
Invalid examples include:
:/23 (area)
() 25th

Further examples of variable names and their correctness are given in Table 2.6.

Table 2.6 Examples of Variable Names

l Variable name ; Valid ? Remark
! First_tag valid
char Not valid charis a keywora
Price$ Not valid Dollar sign is illegal
group one Not valid Blank space is not permitted
‘average_number Valid First eight characters are
significant
int_type Valid Keyword may be part of a name

If only the first eight characters are recognized by a compiler, then the two names
‘ average_height
average_weight

mean the same thing to the computer. Such names can be rewritten as
avg_height and avg_weight

or -
ht_average and wt_average

-without changing their meanings.

2.7 DATATYPES e i

'C language is rich in its dafa types. Storage representations and machine instructions to handle
constants differ from machine to machine. The variety of data types available allow the programmer to

select the type appropriate to the needs of the application as well as the machine.

Constants, Variables, and Data Types

ANSI C supports three classes of data types:
1. Primary (or fundamenlal) data types

2. Derived data types

3. User-defined data types

The primary data types and their extensions are discussed in this section. The user-defined data

types are defined in the next section while the derived data types such as ar functi
and pointers are discussed as and when they are encountered. e e relrciires

All C compilers support five fundamental data types, namel

point (float), double-precision floating point (double) and void. Many of them also offer extended data

one of them in this section.

Note C99 adds three more data

types, namely _Bool, _Complex, and _Imaginary. S
Appendix “C99Fatures” : —maginary. See the

PRIMARY DATA TYPES

Integral Type

Integer Character
signed unsigned type char
int unsigned int signed char
short int unsigned short int unsigned char
long int unsigned long int

Floating point Type

[float] double Long double —] void

Fig. 2.4 Primary data types in C

Table 2.7 Size and Range of Basic Data Types on 16-bit Machines

Data type G Range of values 1
char -128 to 127
int: o _ —32,768 to 32,767
~ float , 3.4e-38 to 3.4e+e38
_ double . . 1.7e-308 to 1.7e+308

Programming in ANSI! C

\)ﬁteger Types

Integers are whole numbers with a range of values supported by a particular machine. Genera||
integers occupy one word of storage, and since the word sizes of machines vary (typically, 16 or 3Y.
bits) the size of an integer that can be stored depends on the computer. If we use a 16 bit w<;rd len thz
the size of the integer value is limited to the range —32768 to +32767 (that is, =2 to +215_1), A si gth,
integer uses one bit for sign and 15 bits for the magnitude of the number. Similarly, a 32 bit wc')rd | e
can store an integer ranging from -2,147,483,648 to 2,147,483,647. ' ength

In order to provide some control over the range
of numbers and storage space, C has three classes short int
of integer storage, namely short int, int, and long oy
int, in both signed and unsigned forms. ANSI C . -
defines these types so that they can be organized ! long int M_i

PR

from the smallest to the largest, as shown in
Fig. 2.5. For example, sho i ;

g i p rt .Int represents fairly Fig. 2.5 Integer types
small integer values and requires half the amount
of stou:age as a regular int number uses. Unlike signed integers, unsigned integers use all the bits for the
magmtude of the number and are always positive. Therefore, for a 16 bit machine, the range of unsigned
integer numbers will be from 0 to 65,535,

We declgre Ior?g and unsigned integers to increase the range of values. The use of qualifier signed

on integers is optional because the default declaration assumes a signed number. Table 2.8 shows all
the allowed combinations of basic types and qualifiers and their size and range on a 16-bit machine.

' I Note (99 allows long long integer types. See the Appendix “C99 Features” l

\ﬁble 2.8 Size and Range of Data Types on a 16-bit Machine

Type Size (bits) Range
char or signed char 8 | =128 to 127 ‘;
unsigned char 8 0 to 255
int or signed int 16 | -32,768 to 32,767
unsigned int 16 0 to 65535
short int or

signed short int 8 {—1281t0 127

unsigned short int 8 ' 0 to 255

long int or
32 | _2.147.482 648 o

 signed long int |
= ' ' | 2,147.483,647
| 0 to 4,294,967,295

_unsigned long int 32 |
i float ‘ 32 | 3.4E - 3810 3.4E + 38

auble o 64 { 1.76 - 308 to 1.7E + 308

long doubl 80 |34E-493210 11E+ 4932 |

Mongidovhie s Tibes ath b 8 Gl

Constants, Varinbles, and Data Types

wfoating Point Types

Floating point (or real) numbers are stored in 32 bilg

(on all 16 bit and 32 bit machines), with ¢ digits of : float i

precision. Floating Point numbers are dofinacd inC by ! 5 BRI oy e i 3

the keyword float. When the accuracy provided by a o 55 m_,ume i E i
float number s not sufficient, the type double can long dauble }
be used to define the humber. A double data type R e N :
number uses G4 bitg giving a precision of 14 digits, Fig. 2.6 Floating-point typos

These are known as double precision numbers,
Rem‘efnber that double type represents the same data type that float fepresents, but with greater
precision. To extend the precision further, we may use long double which uses 80 bits, The relationshig
among floating types is illustrated Fig. 2.6.

\Noid Types

, Veﬁaracter Types

A single character. can be defined as a character(char) type data. Characters are usually stored in 8
bltS. (one b.yte) of internal storage. The qualifier signed or unsigned may be explicitly applied to char,
While unsigned chars have values between 0 and 255, signed chars have values from —128 to 127.

V@ DECLARATION OF VARIABLES ;:P

1. It tells the corhp_iler what the variable name is.
2. It specifies what type of data the variable wil| hold.

The declaration of variables must be done before they are used in the program.

JPlimary Type Declaration

A variable can be used to store a value of any data type. That is, the name has nothing to do with its
type. The syntax for declaring a variable is as follows:

data-type v1,v2,....vn]

V1, v2, ...vn are the names of variables. Variables are separated by commas. A declaration statement
‘must end with a semicolon. For example, valid declarations are:
| : ‘ int count;
int number, total;
double ratio;

ifu and double are the kaywords (o roprasont Integor typo and ronl typo data valuos reapactive)
Table 2.9 shows vatious data types and thalr koyword oquivalonts, Y.

Erogramming in ANSH ¢

\'!}ble 2.9 Data Types and Their Koywords

[e Di“l{:m" Kaeyword equivalont | |
oY r— B RG] BESY s S ”Elﬁl‘ar et e et
Unsigned charactor unsigned char
Signed character slgn;)d char |
Signed intogor slgned int (or Int) |
Signed short integer signed short int ‘

_ (or short int or short)
Signed long integer signed long int
(or long int or long)
Unsigned integer unsigned int (or unsigned)
Unsigned short integer unsigned short int

(or unsigned short)
unsigned long int
(or unsigned long)

Unsigned long integer
Floating point float
Double-precision
floating point
Extended double-precision
floating point

double

long double

The program segment given in Fig. 2.7 illustrates declaration of variables. main() is the beginning
of the program. The opening brace { signals the execution of the program. Declaration of variables is

usually done immediately after the opening brace of the program. The variables can also be declared

outside (either before or after) the majn function. The importance of place of declaration will be dealt in

detail later while discussing functions.

Note (€99 permits declaration of variables at any point within a function or block, prior to

- - their use.
pain () i v Program Name....ceeedvsesorsecssvnsss ~7
{ *
Lo B i SR Declaration.....ceeeeeeeesacnoansns /

float X, ¥;
code;

Programming in ANSI C

/ﬁser-Defined Type Declaration . s
“type definition” that allows users.to efine an ldentnﬁert :
yp defined data type identifier can later be Useq o dw%h
tear

|

s
C supports a feature known a }
represent an existing data type. The user

i . It takes the general form: .
Cai typedef type identifier;

isti d “identifier” refers to the “new” name give

type refers to an existing data type an) . \ i
dat\e/av?yi)r: 'ﬁ:e existing data type may belong to any class of typet. ln:“:d'néldghfecgser deﬁned OH?%
Remember that the new type is ‘new’ only in name, but not the data type. typ nnot Create o %

o . nev
type. Some examples of type definition are: ']
typedef int units;

typedef float marks;
Here, units symbolizes int and marks symbolizes float. They can be later used to declare "ariables

as follows: ’

units batchl, batch2;

marks namel[50], name2[50];
batch1 and batch2 are inclared as int variable and name1[50] and.nameZ[SO] are declareq as 5
element floating point array variables. The main advantage of typedef is that we can create Meaningg,
data type names for increasing the readability of the program.

Another user-defined data type is enumerated data type provided by ANSI Standard. Itis defineq 5
follows:

enum identifier {value1, value2, ... valuen};

The “identifier” is a user-defined enumerated data type which can be used to declare variables that can
have one of the values enclosed within the braces (known as enumeration constants). After this definition,
we can declare variables to be of this ‘new’ type as below:

enum identifier vi, v2, ... vn;

The enumerated variables v1, v2, ... vn can only have one of the values value1, value2, ... valuep,
The assignments of the following types are valid:

vl
v5

"

value3;
valuel;

An example:

enum day {Monday,Tuesday, ... Sunday};
enum day week_st, week_end;

week_st = Monday;

week_end = Friday;

if(week_st == Tuesday)

For example:

enum day {Monday = 1, Tuesday, ... Sunday};
Here, the constant Monday is assigned the value

: : - of 1. The remaining constants are assigned values
that increase successively by 1.

b

Programming in ANSI ©
Statie and extern al (extorn) variablen are automatically inltlalizod to zoro. Automatic (nuto) Vﬂrinb[,,.}

contain undefined values (known as ‘garbage’) unleas (hey are Initinlized axplicilly.

o,

able 2,10 Storage Classes and Their Meaning

< m.‘l;-j;mxs-‘.\wm‘w-.w.h‘:- rntcne .au-b.m....jg_-‘v ey v ey NR

'_Smmgco.clnss; s pMeaning: - : - —
e T e B T ls doclarod. Dofaut is ags-
Local varlable known only to the function In which it is declared. olault is ayye,

Local varlable which oxists and retalns its value even after tha contrg s
transforrod to the calling function.

Static

‘*Xt’?"n Global variable known to all functions In the file.
register Local variable which Is stored in the register. ! ;
T —..]
\/2.10 ASSIGNING VALUES TO VARIABLES 3
*

Variables are created for use in program statements such as,
value = amount + inrate * amount ;
while (year <= PERIOD)

{

year = year + 1;
}

. In the first statement, the numeric value stored in the variable inrate is multiplied by the value stored
iIn amount and the product is added to amount. The resultis stored in the variable value. This process is
possible only if the variables amount and inrate have already been given values. The variable value is
called the target variable. While all the variables are declared for their type, the variables that are used in
expressions (on the right side of equal (=) sign of a computational statement) must be assigned values
before they are encountered in the program. Similarly, the variable year and the symbolic constant
PERIOD in the while statement must be assigned values before this statement is encountered.

ﬁssignment Statement

Vélues can be assigned to variables using the assignment operator = as follows:
variable_name = constant;

: 'We have already used such statements in Chapter 1. Further examples are:

initial_value = 0;

final_value = 100;

balance = 75.84;
= |x|;

yes

Constants, Variables, nng Data Types

C permits multiple assignments in ona line. For example
inftial_value = 0; final _value = 1003
are valid statements.,
An assignment statement implias that the value of the variable on the left of the ‘equal sign’ is set
equal to the valuo of the quantity (or the oxprossion) on the right. The statement
year = yoar t+ 13
moans that the ‘new value' of year Is equal to the ‘old value' of year plus 1.
During assignment oporation, G converts tha type of value on the right-hand sido to the type on the
left. This may involve truncation when real value s converted to an integer.
Itis also possible to assign a value to a variabla at the time the variable is declared, This takes the
following form:
data-type varlable_name = constant;
Somao examples are:
int final_value = 1003
char yes = 'x';
double balance = 75,84,

The process of giving Initial values to variablos Is called initialization. C permits the initialization
of more than one variables In one statemont using multiple assignment operators. For example the
statements

p=q=s=0;

X =y = z = MAX;
are valid. The first statement initializes the variables p, q, and s to zero while the second initializes x, y,
and z with MAX. Note that MAX is a symbolic constant defined at the beginning.

Remember that external and static variables are initialized to zero by default. Automatic variables
that are not initialized explicitly wil contain garbag@

Program in Fig. 2.8 shows typical declarations, assignments and values
I : Pr..ogmm 2'2 l stored in various types of variables.

The variables x and p have been declared as floating-point variables. Note that the way the value of
1.234567890000 that we assigned to x is displayed under different output formats. The value of x is
displayed as 1.234567880630 under %.12If format, while the actual value assigned is 1.234567890000.
This is because the variable x has been declared as a float that can store values only up to six decimal
places.

The variable m that has been declared as Int is not able to store the value 54321 correctly. Instead, it
contains some garbage. Since this program was run on a 16-bit machine, the maximum value that an int
variable can store is only 32767. However, the variable k (declared as unsigned) has stored the value
54321 correctly. Similarly, the long int variable n has stored the value 1234567890 correctly.

The value 9.87654321 assigned to y declared as double has been stored correctly but the value
: is printed as 9.876543 under %lf format. Note that unless specified otherwise, the printf function will
always display a float or double value to six decimal places. We will discuss later the output formats
for displaying numbers.

Conatants, Varinblos, and Data Typos

input amount, interest rate, and pu‘riurl
<0000 0.12 7

Rs 22400,00
Re 25088.00
Re 28098.56
Rs 31470.39
35246.84
6 Rs 39476.46
7 Rs 44213.63

T & L B e

u
=
@

Fig. 2.10 Interactive investment program

three variables amol'.mt, inrate, and period, the computer begins to calculate the amount at the end of
each year, up to ‘period’ and produces output as shown in Fig. 2.10,

Note that the scanf function contains three variables. In such cases, care should be exercised to saa
that the values entered match the order and type of the variables in the list. Any mismatch might lead to
unexpected results. The compiler may no detect such errors.

%1 DEFINING SYMBOLIC CONSTANTS r:L)
We often use certain unique constants in a program. These constants may appear ropeatedly in a
number of places in the program. One example of such a constant is 3,142, representing the value of
the mathematical constant “pi”. Another example is the total number of students whose mark-shoets
are analysed by a 'test analysis program’. The number of students, say 50, may be used for calculating
the class total, class average, standard deviation, etc. We face two problems in the subsequent use of
such programs. These are

1. problem in modification of the program and
2. problem in understanding the program.

Modifiability

We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy of calculations
or the number 50 to 100 to process the test results of another class. In both the cases, we will have 1o

~ search throughout the program and explicitly change the value of the constant wherever it has boon
used, If any value ig left unchanged, the program may produce disastrous outputs,

' Undevrstand'abﬂlity

When,a hUmQﬂc value appears in a program, ite use is not always clear, especially when the same
value means diffsrent things in different places. For example, the number 50 may mean the number of

Frogramming ANST G

stindonts at one place and the pass marks' at anothor place of the same program. We may forget Wha
& Gertitin numbor meant, when wo read the program some days later.

Assigimont of such constants to a symbolic name froes us from those problems. For example, we ma
use the namae STRENGTH to define the numbor of students and PASS_MARK to define the pass mmk:
fequined in a subject. Constant values are assigned to these names at the beginning of the Program
Subsequent use of the names STRENGTH and PASS_MARK in the program has the effect of Causijn :
::;wr defined values to be automatically substituted at the appropriate points. A constant is defineq ag

QWS

Rdefine symbolic-name value of constant

Valid examples of constant definitions are:
#define STRENGTH 100
#define PASS_MARK 50
#define MAX 200
#define PI 3.14159
Syn1polic names are sometimes called constant identifiers. Since the symbolic names are constants
(not variables), they do not appear in declarations. The following rules apply to a #define statement

which define a symbolic constant:

1. Symbolic names have the same form as variable names. (Symbolic names are written in CAPITALS
to visually distinguish them from the normal variable names, which are written in lowercase letters
This is only a convention, not a rule.) '
No blank space between the pound sign ‘¥’ and the word define is permitted.

‘®' must be the first character in the line.
4. Ablank space is required between #define and symbolic name and between the symbolic name

and the constant.
5. #define statements must not end with a semicolon.
After definition, the symbolic name should not be assigned any other value within the program by

- using an assignment statement. For example, STRENGTH = 200; is illegal.

‘Symbolic nhames are NOT declared for data types. Its data type depends on the type of constant.
#define statements may appear anywhere in the program but before it is referenced in the
program (the usual practice is to place them in the beginning of the program).

#idefine statement is a preprocessor compiler directive and is much more powerful than what has
been mentioned here. More advanced types of definitions will be discussed later. Table 2.11 illustrates

w.N

- some invalid statements of #define.

Table 2.11 Examples of Invalid #define Statements

Statement Validity | Remark |
#define X=2.5 ‘=" sign is not allowed
define MAX 10 Invalid No white space between # and define
#define N 25: Invalid No semicolon at the end

#define N5, M 10 Invalid A statement can define only one name.
#DeﬁneARRAYﬂ firhe - ',In\'/alid : ! _ define S_hOU’d“b‘e_ in .llowercase letters
{#deﬁnePRICE$ 100, -+ linvalid: o | $ symbol is not permitted in name

Invalid

OPERATORS AND
EXPRESSIONS

ratoct Expronsion | Wtouar axprassion | el srithimetic | felations AN § Lot Rrrt sty
% 3

Oy
\u Rhment operators I Witwiae oparators | Arithmetleo oporations

\/3/'7 }_}_NTR‘ODUCTION Sheg

o A

)

& h] 1S & rie ;
2« zugp?na arich wet of buit.in oparalors, We have alrondy used soveral of them, such a2z =, & _
S and <. An oparator in o symbol that tolls (he computer 1o perform cortain mathermaticst o Vg

,mﬂmpl.llnti(ma. Opeorators are unod In programs (o manipulite data and variables, Thesy usuztty 150, P
part of the mathematical or logical oxprosalons,

C operators can be classifiod Into a numbor of catogorios, They include:

1. Arithmotic opearalors
Relational opearalors

Logical operators

Assignment operators

Increment and decrement operators

Conditional operators

Bitwise operators

Special operators

An expression is a sequence of operands and operators that reduces to a single value. For exampie,

10 + 15
e is 25. The value can be any type other than void.

PNOOAwp

‘is an expression whose valu

——

o

~ ¥2 ARITHMETIC OPERATORS &

perators. They are listed in Table 3.1. The operators +,—, *, and / all
her languages. These can operate on any built-in data type allowed
multiplies its single operand by —-1. Therefore, a number

. C provides all the basic arithmetic o
~ work the same way as they do in ot
in C. The unary minus operator, in effect,
preceded by a minus sign changes its sign.

Operators and Expressions

Table 3.1 Arithmetic Operators

rOperato_r ‘ Meaning

+ Addition or unary plus

- Subtraction or unary minus
o2 Multiplication

/ Division

% Modulo division

: lntgger divi§i9Q truncates any fractional part. The modulo division operation produces the remainder
of an integer division. Examples of use of arithmetic operators are:

a-b a+b
a*b a/’b
a%b —-a*b

Here a an_d b are variables and are known as operands. The modulo division operator % cannot be
used on floating point data. Note that C does not have an operator for exponentiation. Older versions of

C does not support unary plus but ANSI C supports it. ’

‘/ﬁteger Arithmetic

When both the operands in a single arithmetic expression such as a+b are integers, the expression is
called an integer expression, and the operation is called integer arithmetic. Integer arithmetic always
yields an integer value. The largest integer value depends on the machine, as pointed out earlier. In the
above examples, if a and b are integers, then for a = 14 and b = 4 we have the following results:

a—-b =10
a+b =18
a*b =56

a /b = 3 (decimal part truncated)
a % b = 2 (remainder of division)
During integer division, if both the operands are of the same sign, the result is truncated towards
zero. If one of them is negative, the direction of trunction is implementation dependent. That is,
6/7 =0and-6/-7=0 .

but ~6/7 may be zero or —1. (Machine dependent)
- Similarly, during modulo division, the sign of the result is always the sign of the first operand (the

dividend). That is

“14% 3 = -2
14 % -3 = -2
14 % -3 =2

The program in Fig. 3.1 shows the use of integer arithmetic to convert a
given number of days into months and days.

Fragramming in ANEI G ! ‘

35 = 0 FALSE
10 = 746 TRUE
ath = crd TRUE only If the sum of valuot of 4 and b e oqual to the sum of valugs o,
) “:H" ”

on Githor side of a raelational operator, fhe S,
E "!ff,nw

Whon arlthmatic oxprassions aro usod salati
exproasions will bo ovaluntod first and thon tho rosults compared, That is, arthmetic operzy T
13 by

higher priority ovor rolational oporatort. "
Rolatlonal oxprosslons aro usod In doclslon statomonts such as If and while to decides 4, |,
of action of a running program. Wo have alroady used the whilo statement in Chapte i

51 1, Deer
statomonts aro discussod In dotail in Chaptors 6 and 6, ”’”’%&

"

Among tho six relational operators, each one is a complement of another operator,

> is complement of <=
< Is complement of >=
== is complement of | =
! We can simplify an expression involving the not and the less than operators using the complemer
as shown below: e
Actual one Simplified one
I(x<y) x>=Yy
I(x >y) xe=y
I(x1=y) x==y
(x <=y) x>y
I(x>=y) X<y
I(x==yY) xl=y

‘/54 LOGICAL OPERATORS

as the following three logical operators.

=y

In addition to the relational operators, C h

&& meaning logical AND
] meaning logical OR
! meaning logical NOT

The logical operators && and || are used when we want to test more than one condition and make

decisions. An example is:
ST gl iy s : a>b &&x==10
~ An expression of this kind, which combines two or more relational ex
logical expression or a compound relational expression. Like the simple relational e s
e expression élso yields a value of one or zero, according to the truth table shown in Table 3.3. The logica
i - expression given above is true only if a > b is true and x == 10 is true. If either (or poth} of them are
- false, the expression is false. :

pressions, is termed 2s @
xpressions, @ logica

Oparators and Expros6ion 8

l;-i‘)’” 3.3 Teath Tndie

Value of the exprassion

i

va» 1 opz Sy
RSN A e e .&.,_“41,,-;_“,.,:_.-_~.,~:
B e s S op- 18&0p2 N ki 1 _ij f.’f’.:fm 2
b N()“":(‘“'ﬂ '\JD"_Zero 1 ; 1
Non-zero 0 o i 4
0 Non-zero s 1
o 0 SV B PRI DI TATE O O s 9_____,__,____......—...——}--‘

some examples of the usage of logical expressions are:

1. if (age > 55 && salary < 1000)
2. if (number < 0 || number > 100)

We shall see more of them when we discuss decision statements.

follows:

Note Relative precedence of the relational and logical operators is as

Highest ! 4
>= < <= ’

Lowest | |
It is important to remember this when we use these operators in compound exp

ressions.

V45 ASSIGNMENT OPERATORS =

used to assign the result of an expression to a variable. We have seen the

Assignment operators are
‘=’ |In addition, C has a set of ‘shorthand ’ assignment operators of the form

usual assignment operator,
v Op= exp;

Where v is a variable, exp is an expression and op is a C binary arithmetic operator. The operator op=
is known as the shorthand assignment operator.

The assignment statement

: HE v 0p= exp;
is equivalent to . ,
v =v op (exp);
with v evaluated only once. Consider an example
x += y+l;

This is same as the statement
e : x = x + (y+1);
The shorthand operator += means ‘add y+1 to X' or ‘increment x by y+1'. For y = 2, the above

. statement becomes

=

SN when this statement is executed, 3 is added to x. If the ofd value of x is, say 5, then the new valug
of x s & Soame of the commoanty used shorthand assignment operators are illustrated in Tablg 3.4.

§o 8 Prooremming o anss o

Tadle 3.4 Shomthand Assonment Operators
P S alarert Wil Sie Statement with S
5 assignment oparator shorthand operator
b ——— a+=1 -
E a=a-—1 a==1
a=a"*(n+1) a 7= n+

a=al{n+1) a/=n+1

a=a%b a %=b

—— TR]
The use of shorthand assignment operators has three advantages:
i. What appesars on the left-hand side need not be repeated and therefore it becomes easier to

write,
2. Ths stztement is more concise and easier to read.

3. Ths siztement is more efficient.
Thass advantages may be appreciated if we consider a slightly more involved statement like
value(5*j-2) = value(5*j-2) + delta;
¥With the help of the += operator, this can be written as follows:
value(5*j-2) += delta;
It is sasier to read and understand and is more efficient because the expression 5%-2 is evaluated
only once.

The program attempts to print a sequence of squares of numbers starting from 2. The statement
g A a * = a;

5 l Program of Fig. 3.2 prints a sequence of Squares of numbers. Note the use
of the shorthand operator *= |

which is identical to
a = a*a;
replaces the cumrent value of a by its square. When the value of a becomes equal or greater than N
{=100) the while is terminated. Note that the output contains only three values 2, 4 and 16.

5,‘Prﬁgraﬁ
2 #define N 100
#gefine A 2
main()
23
int a;

Oparators and Exprossions

while(a < N)
{ .
printf("%d\n", a);

a *= g,

1
l

Output

a
16

Fig. 3.2 Use of shorthand operator *=

D/3.6 INCREMENT AND DECREMENT OPERATORS <

C allows two very useful operators not

generally found in other languages. These are the increment and
decrement operators:

++ and ——

The operator ++ adds 1 to the operand, while —— subtracts 1. Both are unary operators and takes the

following form:

++m; or mt++;
—=m; Oor m——;

++m; is equivalent tom = m+l; (or m += 1;)
—-m; is equivalent tom = m-1; (or m —= 1;)
We use the increment and decrement statements in for and while loops extensively.

While ++m and m++ mean the same thing when they form statements independently, they behave

differently when they are used in expressions on the right-hand side of an assignment statement.
Consider the following:

m = 5;
y = ++m;
In this case, the value of y and m would be 6. Suppose, if we rewrite the above statements as
’ m = 5;
y = mid;
then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand and then

the result is assigned to the variable on left. On the other hand, a postfix operator first assigns the value
to the variable on left and then increments the operand.

Similar is the case, when we use ++ (or —) in subscripted variables. That is, the statement
e afi++] = 10;
is equivalent to
G a[il] = 10;
i=i+1

e

7

60 | Programming in ANSI C

tatements. Example:

be used in complex s

The i nt and decrement operators can .

mmm R d after the evaluation S
Old value of n is used in evaluating the expression. n is incremente + Somg

compilers require a space on either side of n++ or ++n.

pe SEaRanainw Ry

. ;nmand de rars are unary operators and they require variable ag their
operands. : i

. ‘.-’\r;:en POStfix ++ (or —) is used with a variable in an expression, the GXP:"ZS';’:‘ ;:;‘;i:‘;‘::&%ﬁ'st
using the criginal value of the vanable and then the variable is incremented () by
one. .

* When prefix ++(or —) is used in an expression, the variable is mﬁren;erinatsli (or decr €Mmenteq)
first and then the expression is evaluated using the new value of the v .

* The precedence and associatively of ++ and —— operators are the same as those of unary + ang
unary —

———

3.7 CONDITIONAL OPERATOR O
.7 CONDITIONAL oPE; ‘

" is available in C to construct conditional expressions of the form

Atemary Operator pair =2 -

exp1 ? exp2 : exp3
where €xpi, exp2, and exp3 are expressions.
The operator 2 - works as follows: exp17is evaluated

RS oE d W7
RS i

Operators and Expressions

Table 3.9 Oitwise Oporalors

Qpeorator Meaning
AT S bitwise AND ;
I bitwise OR |
% bitwise exclusive OR |
= shift left
Al o e et Ll i T i shift right

\ 49 SPECIAL OPERATORS =3

C supports some special operators of interest such as comma operator, sizeof operator, pointer
operators (& and *) and member selection operators (. and —>). The comma and sizeof operators are
discussed in this section while the pointer operators are discussed in Chapter 11. Member selection
operators which are used to select members of a structure are discussed in Chapters 10 and 11. ANSI
committee has introduced two preprocessor operators known as “string-izing” and “token-pasting”
operators (# and ##). They will be discussed in Chapter 14.

‘}h/é Comma Operator

The comma operator can be used to link the related expressions together. A comma-linked list of
expressions are evaluated /eft to right and the value of right-most expression is the value of the combined
expression. For example, the statement

value = (x = 10, y = 5, x+y);
first assigns the value 10 to x, then assigns 5 to y, and finally assigns 15 (i.e. 10 + 5) to value. Since

comma operator has the lowest precedence of all operators, the parentheses are necessary. Some
applications of comma operator are:

In for loops:
for (n =1, m= 10, n <=m; n++, m++)
In while loops:
while (c = getchar(), c != '10')
Exchanging values:

Ae sizeof Operator

The sizeof is a compile time operator and, when used with an operand, it returns the number of bytes
the operand occupies. The operand may be a variable, a constant or a data type qualifier.

Examples: - m = sizeof (sum);
n = sizeof (long int);
, k = sizeof (235L);
The sizeof operator is normally used to determine the lengths of arrays and structures when their

sizes are not known to the programmer. It is also used to allocate memory space dynamically to variables
during execution of a prograné

Operators and Expressions

/fm ARITHMETIC EXPRESSIONS 3

An arithmetic expression is a combination of variables, constants, and (?perators arrangec'l as perdthe
syntax of the language. We have used a number of simple expressions in the examples dlscugse so
far. C can handle any complex mathematical expressions. Some of the examples:, of C expressions are
shown in Table 3.6. Remember that C does not have an operator for exponentiation.

Table 3.6 Expressions

[Algebraic expression C expression
axb-c a*b-c
(m+n) (x+y) (m+n) * (x+y)
a_b_) a*blc
c
3x2 +2x+1 3*X*X 2*x+1
(-’EJ +e x/y+c
B4

5/ﬁ;’.ﬂ EVALUATION OF EXPRESSIONS

Expressions are evaluated using an assignment statement of the form:

)
(N

variable = expression;

Variable is any valid C variable name. When the statement is encountered, the expression is
evaluated first and the result then replaces the previous value of the variable on the left-hand side. All

variables used in the expression must be assigned values before evaluation is attempted. Examples of
evaluation statements are

X=a*b - c;
Yy=>b/c*a;
zZ=a-b/c+d;

-The blank space around an operator is optional and adds only to improve readability. When these _

the variables a, b, ¢, and d must be defined before they are used in

statements are used in a program,
the expressions. _

their evaluation.

: Output_of the program also illustra
discussed in the next section.

Programming in ANSI C

~ Progran

Output

main()

{

float a4, b, €, X» Y4 Zi
a = 93

b.= 12}

c .= J3;
X:=a~b./3+¢c*2 -3
yea=~b/(3+c)*(2-1);
z=a-(b/(3+c)*2) -1

printf("x = %f\n", x)3

printf("y = %f\n", y);
printf("z = %f\n", z);

x = 10.000000

N
]

Fig. 3.4

7.000000
4.000000

412 PRECEDENCE OF ARITHMETIC OPERATORS

Hlustrations of evaluation of expressions

~ The basic evaluation procedure includes
first pass, the high priority operators (if any
 pass, the low priority operators (if any) are applied as the
evaluation statement that has been used in the program of

ahd'is:evaluated as follows

High priority * / %
Low priority + —

X = a=b/3 + c*2—1

' When 'a,= 9, b =12, and ¢ = 3, the statement becomes

‘X =9-12/3 + 3*2-1

L
An arithmetic expression without parentheses will be evaluated from left to right using the rules of
precedence of operators. There are two distinct priority levels of arithmetic operators in C:

‘two’ left-to-right passes through the expression. During the
) are applied as they are encountered. During the second

y are encountered. Consider the following
Fig. 3.4.

r"

Operators and Expressions

First pass
Step1: x = 9-4+3"2-1

Step2: x = 9-4+6-1

second pass
Step3: x = 5+6-1
Step4: x = 11-1
Step5: x =10

These steps are illustrated in Fig. 3.5. The numbers inside parentheses refer to step numbers.

o

1 3*2
|_2‘/il (1) * _],_J (2)

4
(3) l
L (4)

l] O]

Fig. 3.5 [Illustration of hierarchy of operations

However, the order of evaluation can be changed by introducing parentheses into an expression.
Consider the same expression with parentheses as shown below:

9-12/(3+3)*(2-1)
Whenever parentheses are used, the expressions within parentheses assume highest priority. If two

or more sets of parentheses appear one after another as shown above, the expression contained in the
left-most set is evaluated first and the right-most in the last. Given below are the new steps.

First pass
Step1: 9-12/6 * (2-1)
Step2: 9-12/6 * 1

Second pass
Step3: 9-2 * 1
Step4: 9-2
Third pass
- Step5: 7
This time, the procedure consists of three left-to-right passes. However, the number of evaluation
steps remains the same as 5 (i.e., equal to the number of arithmetic operators).

Parentheses may be nested, and in such cases, evaluation of the expression will proceed outward

frorq the innermost set of parentheses. Just make sure that every opening parenthesis has a matching
closing parenthesis. For example

Y

Programmlng in ANSI C

9-(12/(3+3)*2)-1=4
whereas
9-((12/3)+3*2)-1=—2 | use theri 1
While Parentheses allow us to change the order of priority, we may also 0 iMprg,

ir just to mak S
Understandability of the program. When in doubt, we can always add an extra pair j © Sure thay
the priority assumed is the one we require.

of Expr
d R s T

i

e

b8
)

TSRy

\

First, Parenthesized syp expression from left to right are evaluated. ion
e If Parentheses are Nested, the evaluation begins with the innermost sub-expression.

* The precedence rule is applied in determining the order of application of operators in evaluating
sub-expressions,

* The associativity rule is applied when two or more operators of the same precedence level
appearin a sub-expression.

* Arithmetic eXpressions are evalyateg from left to right using the rules of precedence.

* When Parentheses gre used, the €Xpressions within parentheses assume highest priority.

| Program 35 |

Write a C program for the following expression: a=5<=8 && 6!=5.

#include <stdio.h>
#include <conio.h>
void main()
{
int a;
a = 5<=8 gg& 6!=5;
Printf("sd", a).
getch();
}
Output
1

Fig. 3.6 Program for the expression:a=5<=8 g& 61 = 5

3.13 SOME COMPUTATIONAL PROBLEMS

a =1.0/3.0;
I A WA L i of b computed in a
~We know that (1 -0/3.0) 3.0 is equal to 1. But there is no guarantee that the \(alue : ‘
pfogrém will équa! 1.

MANAGING INPUT AND
OUTPUT OPERATIONS

gormatted input I Control string | Formatted output. o

41 INTRODUCTION e 7

Reading, processing, and writing of data are the three essential functions of a computer program. Most
programs take some data as input and display the processed data, often known as informatlor'v or results,
on & suitable medium. So far we have seen two methods of providing data to the program variables. One
method is to assign values to variables through the assignment statements such as x = 5; a = 0; and so
on. Another method is to use the input function scanf which can read data from a keyboard. We have
used both the methods in most of our earlier example programs. For outputting results we have used
axtensively the function printf which sends results out to a terminal.

Unlike other high-level languages, C does not have any built-in input/output statements as part of
its syntax. All input/output operations are carried out through function calls such as printf and scanf.
There exist several functions that have more or less become standard for input and output operations
in C. These functions are collectively known as the standard I/O library. In this chapter we shall discuss
some common /O functions that can be used on many machines without any change. However, one
should consult the system reference manual for exact details of these functions and also to see what
other functions are available.

It may be recalled that we have included a statement

#include <math.h>

in the Sample Program 5 in Chapter 1, where a math library function cos(x) has been used. This is

to instruct the compiler to fetch the function cos(x) from the math library, and that it is not a part of C

language. Similarly, each program that uses a standard input/output function must contain the statement
#include <stdio.h>

at the beginning. However, there might be exceptions. For example, this is not necessary for the functions

printf and scanf which have been defined as a part of the C language.

- The file name stdio.h is an abbreviation for standard input-output headerfile. The instruction #include
<stdio.h> tells the compiler ‘to search for a file named stdio.h and place its contents at this point in the
program’. The contents of the header file become part of the source code when it is compiled.

Programming In ANSI ¢

4.2 READING A CHARACTER 2

The simplast of all input/output operations Is roeading a character from the ‘standard input’ unit (USUa"
the keyboard) and writing it to the ‘standard output’ unit (usually the screen). Reading a single Charagyg
getchar. (This can also be done with the help of the scanf fUnctio,:

can be done by using the function

which is discussad in Soction 4.4,) The getchar takos the following form:

variable_name = getchar();

variable_name is a valid C name that has been declared as char type. When this statememi

encountered, the computer waits until a key is pressed and then assigns this character as 4 Valuz
r is used on the right-hand side of an assignment statement, the

to getchar function. Since getcha
character value of getchar is in turn assigned to the variable name on the left. For example

T ———— S,
e S —

char name;

name = getchar();

Will assign the character ‘H’ to the variable name when we press the key H on the keyboard. Since

getchar is a function, it requires a set of parentheses as shown.
' : Program T I The program in Fig. 4.1 shows the use of getchar function in an interactive
Sy environment.

The program displays a question of YES/NO type to the user and reads the user’s response in a single

character (Y or N). If the response is Y ory, it outputs the message
My name is BUSY BEE

dtherwise, o'utputs
' %3 You are good for nothing

I :-Note !Thefetis one line space between the input text and output message.

: _‘.‘P‘rogram il
U #include <stdio.h>
main()
{

“char answer; |
printf("Would you'like to know my name?\n");

printf("Type Y for YES and N for NO: "); '

~ answer ="ge'l‘:char(); /* Reading a character...*/
~ if(answer == 'Y' || answer
“printf("\n\nMy name is BUSY BEE\n");

== 'y!)

" else e T
7 3,."pr_‘._j'ntf("'-\h\nYQd are good for nothing\n");

. Wou’lduyoqﬂ_,] ike to know my name?

5 WRITING Managing Input and Output Operations §:yé
47 — A CHARACTER

Like getchar, there is an analo
ou i
it takes the form as shown belgw- s function putchar for writing characters one at a time to the terminal
. nal.

where variable name i putchar (variable_name);
— S a .
character contained in the Vatr):'p: char variable containing a character. This statement displays th
able_name at the terminal. For example, the statements Yer-
answer = 'Y';

e putchar (answer);

will dusplay the character Y on the screen. The st(atement)
putchar ('\n');
|d cause the cur;

woul sor on the screen to move to the beginning of the next line.

: ! A program that reads a character from keyboard and then prints it in reverse
e, the output will be

case is given in Fig. 4.3. That is, if the input is upper cas
lower case and vice versa.

The function islower is a
alphabet; otherwise takes
ercase alphabet

toupper, and tolower.

ument is a lowercase
ment into an upp

The program USes three new functions: islower,
conditlonal function and takes the value TRUE if the arg
the value FALSE. The function toupper converts the lowercase argy
while the function tolower does the reverse.

- Program.. - ; ; :

Gelidi #include <stdio.h>

#include <ctype.h>

main()

{
char alphabet;
printf("Enter an alphabet");
putchar('\n'); /* move to next line */
alphabet = getchar()s -

if (is]ower(alphabet)) .
:putchar(toupper‘(a1phabet));/* Reverse and display */

‘e'lse rl »
putchar(to]ower(a]phabet)); /* Reverse and display */

}

Enter an alphabet
iy "
A ;
. Enter. an alphabet
Q. T
~ Enter an alphabet
'”Z‘T:'f; . o]

R 'v.Fjgv 4‘3 | Re of alphabets in reverse cast

ading and writing

If"’mm'mumlnu h ANS! ©

4.4 FORMATTED INPUT 5
N e T A e A NS SN 555 ot 5 AP A SR e -‘..___«f{; M:\L

Formatted input refora to an input data that has boon arrangod In a particular format. For oxamp|

conslder the following data: 0,

15.75 123 John
; Thla lh“m containg threo ploecos of data, arrangod In a particular form. Such data has to be reaq
conferming to the format of ita appoaranco. For examplo, tho first part of the data should be regaq into

1 a variable float, tho second into Int, and the third part Into char. This Is possible in C using the Scangf
i ‘_ function. (scanf moans scan formatled.)

We have already used this input function In a number of examples. Here, we shall explore all of the

‘opuons that are available for roading the formatted data with scanf function. The general form of scapg
s

scanf (“control string”, arg1, arg2, argn);

The control string specifies the field format In which the data is to be entered and the arguments argq,
arg2, ..., argn specily the address of locations where the data is stored. Control string and arguments
are separated by commas.

i Control string (also known as format string) contains field specifications, which direct the interpretation
; of input data. It may include: ’

e Field (or format) specifications, consisting of the conversion character %, a data type character (or -
type specifier), and an optional number, specifying the field width.
e Blanks, tabs, or newlines.

Blanks, tabs and newlines are ignored. The data type character indicates the type of data that is to
be assigned to the variable associated with the corresponding argument. The field width specifier is
optional. The discussions that follow will clarify these concepts.

Inputting Integer Numbers

The field specification for reading an integer number is:
% w sd

' i indi i ification follows. w is an integer number
tage sign (%) indicates that a conversion speci N
tha.trgge‘:::?f:::'}hegﬁela'g wiglth of the number to be read and d, known as data type character, indicates
that the number to be read is in integer mode. Consider the following example:
scanf ("%2d %5d", &numl, &num2) ;
até line:
: : 50 31426

L The value 50 is assigned to num1 and 31426 to num2. Suppose the input data is
g | 31426 50

The variable num1 will be assigned 31 (because of %2d) and num2 will be aSSI.gne;i 422in2;2?1?

. -part of 31426). The value 50 that is unread will be assigned to the first vanab}e in the r;_ ' width
i ‘,.'Ca*‘:'f~ThiS kind of errors may be eliminated if we use the field specifications without the fie

- specifications. That is, the statement

RS - scanf("%d %d", &numl, &num2);

as follows:

*~will read the data
s T e 31426 50
: c‘orrgctly and assign 31426 to num1 and 50 to num2.

e N O A NN

Managing Input and Output Operations

Input data items must be separated by spaces, tabs or newlines. Punctuation marks do not count as

separators. When the scanf funclion searches the input data line for a value to be read, it will always
bypass any white space characters.

What happens if we enler a floating point number instead of an integer? The fractional part may be
stripped away! Also, scanf may skip reading further input.

When the scanf reads a particular value, reading of the value will be terminated as soon as the
number of characters specified by the field width is reached (if specified) or until a character that is not
valid for the value being read is encountered. In the case of integers, valid characters are an optionally

signed sequence of digits.
An input field may be skipped by specifying * in the place of field width. For example, the statement

scanf("%d %*d %d", &a, &b)

will assign the data

123 456 789

as follows:
123 to a
456 skipped (because of *)
789 to b

The data type character d may be preceded by ‘I’ (letter ell) to read long integers and h to read short
integers.

Note We have provided white space between the field specifications. These spaces are not
necessary with the numeric input, but it is a good practice to include the.

Various input formatting options for reading integers are experimented in the
I Program 4.4 program shown in Fig. 4.4.

Program

ma1n()
{
int a,b,Cc,X,¥,Z3
int p,q,r;
printf("Enter three integer numbers\n“);
scanf("%d %*d %d",%a,&b,&c);
printf("%d %d %d NN dJbaC) e
printf(“Enter two 4-digit numbers\n");
scanf(“%2d %4d",&x,8y);
printf("%d %d\n\n", Xs¥)3
printf("Enter two integers\n");
scanf("%d %d", &a,&x);
printf("%d %d \n\n",a, X) i
printf("Enter a nine digit number\n");
- scanf we3d %4d %3d",&p,.&q, &r);
~printf("%d %d %d \n\n",p,q.v);
printf("Enter two three d’gwt numbers\n®);
 scanf("%d %d",&x,Ry);
printf("%d %d",x,¥);

i

e T .,

% P WESN

ad

- Vi

Frogramming in ANSI C

Gutput
nter three integer numbhers
1 2 3
1 3 -38727
tnter two 4-digit numbers
6789 4321
67 89
Enter two integers
44 66
4321 44
Enter a nine-digit number
123456789
66 1234 567
Enter two three-digit numbers
123 456

89 123

Fig. 4.4 Reading integers using scanf

The first scanf requests input data for three integer values a, b, and ¢, and accordingly three values
1, 2 and 3 are keyed in. Because of the specification %*d the value 2 has been skipped and 3 js
assigned to the variable b. Notice that since no data is available for c, it contains garbage.

The second scanf specifies the format %2d and %4d for the variables x and y respectively. Whenever
we specify field width for reading integer numbers, the input numbers should not contain more digits that
the specified size. Otherwise, the extra digits on the right-hand side will be truncated and assigned to the

scanf statement.
NOTE: Itis legal to use a non-whitespace character between field specifications, However, the scanf
expects a matching character in the given location. For example,
scanf("%d-%d", &a, &b) ;

accepts input like
123-456

to assign 123 to a and 456 to b.

Inputting Real Numbers

Unlike integer numbers, the field width of real numbers is not to be specified and therefore scanf reads
real numbers using the simple specification %f for both the notations, namely, decimal point notation
and exponential notation. For example, the statement

scanf("%f %f %f", &x, &y, &z);

with the input data
. 475.89 43.21E-1 678

Managing Input and Output Oporations

will assign the value 475.89 to x, 4.321 to i
. v 4. y. and 678.0 to z. The input fiel i i
separated by any arbitrary blank spaces. it ik

If the number to be read is of double t i i
8 ype, then the specification should be ¢ i %
A number may be skipped using %*f specification. P be sifinstead of simple %1

Reading of real numbers (in both decimal point and exponential notation) is

_ Program 4.
l Program 4.5 illustrated in Fig. 4.5.

Program
main()
{
float x,y;
double p,q;
printf("values of x and y:");
scanf("%f %e", &x, &y);
printf("\n");
printf("x = %f\ny = %f\n\n", x, y);
printf("Values of p and q:");
scanf("%1f %1f", &p, &q);
printf("\n\np = %.121f\np = %.12e", p,q);
}
Qutput

Values of x and y:12.3456 17.5e-2

x = 12.345600

y = 0.175000

Values of p and q:4.142857142857 18.5678901234567890
p = 4.142857142857

q = 1.856789012346e+001

Fig. 4.5 Reading of real numbers

Inputting Character Strings

We have already seen how a single character can be read from the terminal using the getchar function.
The same can be achieved using the scanf function also. In addition, a scanf function can input strings
containing more than one character. Following are the specifications for reading character strings:

%ws or %wc

The corresponding argument should be a pointer to a character array. However, %c may be used to
read a single character when the argument is a pointer to a char variable.

l Program'4.6 . I Reading of strings using %wc and %ws is illustrated in Fig. 4.6.

The program in Fig. 4.6 illustrates the use of various field specifications for reading strings. When we use
~ ouwec for reading a string, the system will wait until the w®" character is keyed in.

~

Programming in ANSI ¢

Reading Mixed Data Types

Itis possible to use one scanf statement to input a data line containing mixed tm(;dse :2:20;25::h Cageg
care should be exercised to ensure that the input data items match the con ;0 epex ted thm Ordg,
and type. When an attempt is made to read an item that does not match th?rhyepstatepment ' 1€ scapy
function does not read any further and immediately returns the values read. ‘

scanf ("%d %c %f %s", &count, &code, &ratio, name);
will read the data

15 p 1.575 coffee

correctly and assign the values to the variables in the order in which they appear. Some systems acce

integers in the place of real numbers and vice versa, and the input data is converted to the type Specifieq
in the contro| string.

Note A space before the %c specification in the format string is necessary to skip the whije
Space before p.

Detection of Errors in Input

When a scanf function completes reading its list, it returns the value of number gf items_ that are
Successfully read. This value can be used to test whether any errors occurred in reading the input. For
€xample, the statement
scanf("%d %f %s, ga, &b, name);
will return the value 3 if the following data is typed in:
20 150.25 motor

and will return the value 1 if the following line is entered

20 motor 150.25

This is because the function would encounter a string when it was expecting a floating-point value,
and would therefore terminate its scan after reading the first value.

e A T The program presented in Fig. 4.8 illustrates the testing for correctness of
I : Prpgram 48 l reading of data by scanf function.

and the truncated decimal part is assigned to the next variable.

l the_ ‘A.The éhéracter ’2"is-assigned to the character variable c. I
o besay wiomain().
b :
: intiash :
- float b; | ;
g

Managing Input and Output Operations

char ¢,

pfi:ﬂ.f("l'lﬂﬂ' values of a, b and e\n") s
it (scanf("%d %f

sc", Ba, &b, &c) == 3)
printf("a = %d b = %f ¢ -

= %e\n" , a, h, ¢);
else

printf("Erroy in input.\n");

gutput

Enter values of a, b and ¢
12 3.45 A

4= §2 b = 3.450000 (&

= A
, Enter values of a, b and ¢
2378 9
a = 23 b = 78.000000 ¢ =09

Enter values of a, b and ¢
8 A 5.25

Error in input.

Enter values of a, b and ¢
Y 1267

Error in input.

Enter values of a, b and ¢
15. 75192 35)

a.=x15 b = 0.750000 = 2

Fig. 4.8 Detection of errors in scanf input

Commonly used scanf format codes are given in Table 4.2

Table 4.2 Commonly used scanf Format Codes

Code | : ‘ Meaning

%c read a single character

%d read a decimal integer
%e read a floating point value
%f read a floating point value
%g

read a floating point value
A G read a short integer

%oi read a decimal, hexadecimal or octal integer
%0 - read an octal integer

%s read a string

%u read an unsigned decimal integer

%x

read a hexadecimal integer

S—
R

| <:%[_;]-_i_;1__'_,‘_:-:“:_‘ s e read a string of word(s)

-

H Programming in ANSI C

The following letters may be used as prefix for certain conversion characters.
h for short integers 4
l for long integers or double
L for long double

, Note g adds some more format codes. See the Appandix ‘C99 Features”,

Points to Remember While Using scanf

If we do not plan carefully, some ‘crazy’ things can happen with scanf. Since the 110 routines 4,
part of C language, they are made available either as a separate module of the C library Orasg Mot 5
the operating system (like UNIX). New features are added to these routines from time to time art of
vers.lons of systems are released. We should consult the system reference manuag| before Usin S ney,
routines. Given below are some of the general points to keep in mind while writing 5 scanf Stategmthese
1. All function arguments, except the control string, must be pointers to variables. ent.
2. Format Specifications contained in the control string should match the arguments in order
3. Input data items Must be separated by spaces and must match the variables receiving the ;

in the same order. 9 the inpy,

4. _The reading will be terminated, when scanf encounters a ‘mismatch’ of datg or a charagy
IS not valid for the value being read. €r that

5. When Searching for a valye scanf i i i i
_ , gnores line boundaries and simply |ooks
appropriate character. o the e

6. Any unread data items in a line will b i art of the data i i
Any e considered as p Nputline to the next scanf

7. When the field width specifier w is used, it should be large enough to contain the input datg size

e Each variable to be read must have a filed specification,
e For each field specification, there must be a variable address of proper type.
* Any non-whitespace character used in the format string must have a matching character in the
user input.
e Never end the format string with whitespace. It is a fatal error!
* The scanf reads until:
— Awhitespace character is found in a numberic specification, or
— The maximum number of characters have been read or
— An error is detected, or
— The end of file is reached

4.5 FORMATTED OUTPUT S

¥ N . is highly desirable
- We have seen the use of printf function for printing captions and numerical res?fjr ;t :: f;'ghe)a/sy—to-use
that the outputs are produced in such a way that they are understandable an

AT

Mansylng Input ard Gutput Operations

forrn. 1t i therelote nooassnr 3 f
Hore nocessary for tho prograrmer o give caref i
o b _ : , o ggiver caraful considaration o the e <
clarity of the outpat producoed by his program, l 140 he sepsafEnog and
o ' " v pa
o ‘::':nplﬁmfj .rm?iv:..wnnnl pf«.Mrluﬁ cartain features that can be effectively ezploited to comtrol the
anment and apacing of print-outs on the terminals, The general forrn of printf statemen is?
printf(“control string”, argl, arg2,, argn);
Confrol string consiasts of three typas of tems:

1. Charactors that will be printed on the screen as they appear.
P) N
2. Format specifications that define the output format for display of each item.

-

- 3. Escape sequence characters such as \n, \t, and \b.

‘!;hca c:o’ntrol string indicates hov.j many arguments follow and what their types are. The arguments
aryg “._rarg’z, ,,,,, ., argn are the variables whose values are formatted and printed according toc the
speci ucat:or?z; of the control string. The arguments should match in number, order and type with the
format specifications,

A simple format specification has the following form:

% w.p type-specifier
where W. is an integer number that specifies the total number of columns for the output value and p is
another integer number that specifies the number of digits to the right of the decimal point (of a real
number) or the number of characters to be printed from a string. Both w and p are optional. Some

examples of formatted printf statement are:
printf("Programming in c");
printf(" ");
printf("\n");
printf("%d", x);
printf("a = %f\n b = %f", a, b);
printf("sum = %d", 1234);
printf("\n\n");

printf never supplies a newline automatically and therefore multiple printf statements may be used to
build one line of output. A newline can be introduced by the help of a newline character \n’ as shown in

some of the examples above.

Output of Integer Numbers
The format specification for printing an integer number is:

%wd
where w specifies the minimum field width for the output. However, if a number is greater than the
- gpecified field width, it will be printed in full, overriding the minimum specification. d specifies that Fhe
value to be printed is an integer. The number is written right-justified in the given field width. Leading
blanks will appear as necessary. The following examples illustrate the output of the number 9876 under

different formats:

, Format ' Output

' printf(“%d", 9876) [e[8[7]6]

_ printf("%6d", 9876) - T] [o9]8[7]6]
 printf(“%2d", 9876) [e[8[7]6]

o

ngrmnming in ANSI C
:

PHNt(“%06d" 0876) [o 876 | |
~ Printf("%06d" 9876) [0o]o|8]7]6]
ok a':a'; Soii'i'ﬁoiﬁn'?me the printing to be leftjustified by placing a minus sign directly afte, the o
by placing; a‘b o t? ot::)er ;ot:;thﬂzlzawizl; asbovr;;. Itis also possible to paq with zeros the lea.ding blank/o
210 (0) are known as e pecifier as shown in the last item above. The minus () ans
o s T iy s i1 e 1 he ploce of

in the format specification. Similg |
rly,

' Program49 £ I Thg program in Fig. 4.9 illustrates the output of integer numberg ung
: bt A various formats. er
Program
main()
{
int m = 12345;
long n = 987654;
printf("sd\n",m);
pr"intf("%]()d\nu'm);
printf("%010d\n",m);
printf("%-10d\n",m);
printf(“%101d\n",n);
printf("%101d\n",-n);

Output
12345

12345
0000012345
12345

087654
- 987654

Fig. 4.9 Formatted output of integers

Output of Real Numbers
The o(ﬁput of a real number may be displayed in decimal notation using the following format specification:
T ' S % w.p f
The integer w indicates the minimum number of positions that are to be used for the fisplay of the
~value and the integer p indicates the number of digits to be displayed after the decimal point (precision).
The value, when displayed, is rounded to p decimal places and printed right-justified in the é’lé;ld ;f" :7
ec

- columns. Leading blanks and trailing zeros will appear as necessary. The default precision is’
“places. The negative numbers will be printed with the minus sign. The number will be displayed in the form
- [=]1mmm-nnn. - Sl 5550 :

Manoging Input aned Qutput Gpetations

Wa can also display o raal number In oxponantinl notation by using the spacification:

Yw.p o
The display takes tho form

[=] nunnnnef & |xx

whete the length of the string of n's 1o apocitiod by the procision p. The default precision is 6. The field
width w should satisfy thoe condition,

W T
The value will be roundod off and printad right justifiod in the field of w columns,

Padding the leading blanks with zeros and printing with lefl-justification are also possible by using
flags 0 or - betore the fiold width spocilior w.

The following oxamples lllustrate tho output of tho number y

= 098.7654 undar different format
specifications:

Format Qutput
prnti("%7.41 " y) (o788 . [7[6][56]4]
printi(“%7.2",y) 1 (o8] [7]7]
printf(*%-7.21"y) (o8l 17171 | |
printf*%f”,y) [o]8] .]7]6]5]4]
print{(*%10.26"y) C [|9 [8][8[oe[*[0[T]
printf(*%11.4e" -y) L -[e]. |8[7|6]5[e]+[0]1]
printf(“%-10.2e",y) (o] . |8|8]le|+]O] 1] | |
printf%e".y) o1 - [8f[7[6]5]4 [0 Je |+ |0 [1]

Some systems also support a special field specification character that lets the user define the field
size at run time. This takes the following form:

printf(“%*.*f", width, precision, number);

In this case, both the field width and the precision are given as arguments which will supply the
values for w and p. For example,

printf("%*.*f",7,2,number);
is equivalent to
printf(“%7.2f", number);

The advantage of this format is that the values for width and precision may be supplied at run time,
thus making the format a dynamic one. For example, the above statement can be used as follows:
int width = 7;

“int precision = 23

printf("%*.*f", width, precision, number);

: ‘ | Program 4.10 I All the options of printing a real number are illustrated in Fig. 4.10.

Frimpesimrieeg i ANST C

Ww
m
.

~
(%))

w0
o ™
~J
O O
U Wn
I
Q
o

W

O
jay]

277
0098.77

98.77
9.88e+001
-9.8765e+001
9.88e+001
9.876540e+001

Fig. 4.10 Formatted output of real numbers

Printing of a Single Character

A single character can be displayed in a desired position using the format:
%wce
ustified in the field of w columns. We can make the display /eft-

The character will be displayed right-ji
the integer w. The default value forwis 1.

Justified by placing a minus sign before

- Pr,ivn‘ting_of Strings
T s . . .
et he forma1 speciﬁgathn for outputting strings is similar to that of real numbers. It is of the form
T g - Miwipsi

Mannging toput and Outpif Operaficry

where w s;_'eec.iﬁms lhhc‘r field width for diaplay and £ Instructs that only the first p charackers of the sifivg
are to be displayed. The display is right-justified.

The !ollowing examples show the effect of variety of specifications in printing 8 string “HEW DELHI
1100017, containing 16 characters (including banks).

Specification Qutput
. 12 3 45 6 78 90123 456 7% 90
& — s gty
: NiEfw] |ofefiiu]i] [1]1]ofofofs] [|
w20s [[[| IN[EWw] Tole[t]n]i] [111l0lo0lo!s
%20.10s N elw] [ple tin 1
%.5s N|E |wW D T T1TT
- %-20.10s [N|E|w| |D|E|L|H]|I BN
%5s N[E[w] [D[E[L[H]]I 1[1ofofol1] | T |
7k l Program 4.11 IPrinting of characters and strings is illustrated in Fig. 4.11.
:.lé'rfog_r‘am iy s '
S main()
{

char x = 'A';
char name[20] = "ANIL KUMAR GUPTA";
printf("OUTPUT OF CHARACTERS\n\n");
printf("%c\n%3c\n%5c\n", Xx,x,x};
printf("%3c\n%c\n", x,x);
~printf("\n"); . ; :
printf("OUTPUT OF STRINGS\n\n");
printf("%s\n", name);
i printf(“%ZOS\n", name) ;.
printf("%20.10s\n", name);
~ printf("%.5s\n", name);
printf("%-20.10s\n", name);
printf("%5s\n", name); =

OUTPUT OF CHARACTERS

e 9] ol j;,‘

R
_—"

SR AT Y

Frogrsmmrming i AHE

Mixed Data Output

It is permitted to mix data types in one printf siztement For

is valid. As pointed out eadier, printf uses itz control etring o
and what their types are. Therefore, the formzt specihications ehc

rtors zarpe sl rs
LA - s -

printf(*sd 5f %s %c

-
\

bl
decide how mzry vZrZ2es 0 2 trrpe
ol metcs the warzties

order, and type. If there are not enough varizbles or if they zre of the wrong tyos

be incomrect.

Table 4.3 Commonly used printf Format Coc

rice
22

Code Meaning
YoC print a single character
Y%od print a decimal integer
e print a floating point value in exponent form
o%f print a floating point value without exponent
Y%og print a floating point value either e-type or F-iype depencing oo
O print a signed decimal integer
%0 print an octal integer, without leading zero
%s print a string
Shou print an unsigned decimal integer
: %x ; print a hexadecimal integer, without leading Ox
s characters.

h for short integers

The following letters may be used as prefix for certain conversion

1 for long integers or double

. 'L for long double.

